44 research outputs found

    BioSWR - Semantic Web services Registry for Bioinformatics

    Get PDF
    Article About the Authors Metrics Comments Related Content Abstract Introduction Functionality Implementation Discussion Acknowledgments Author Contributions References Reader Comments (0) Figures Abstract Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/​under the LGPL license

    The multiple roles of waters in protein solvation

    Get PDF
    Extensive molecular dynamics (MD) simulations have been used to characterize the multiple roles of water in solvating different types of proteins under different environmental conditions. We analyzed a small set of proteins, representative of the most prevalent meta-folds under native conditions, in the presence of crowding agents, and at high temperature with or without high concentration of urea. We considered also a protein in the unfolded state as characterized by NMR and atomistic MD simulations. Our results outline the main characteristics of the hydration environment of proteins and illustrate the dramatic plasticity of water, and its chameleonic ability to stabilize proteins under a variety of conditions

    Exploring the early stages of chemical unfolding of proteins at the proteome scale

    Get PDF
    After decades of using urea as denaturant, the kinetic role of this molecule in the unfolding process is still undefined: does urea actively induce protein unfolding or passively stabilize the unfolded state? By analyzing a set of 30 proteins (representative of all native folds) through extensive molecular dynamics simulations in denaturant (using a range of force-fields), we derived robust rules for urea unfolding that are valid at the proteome level. Irrespective of the protein fold, presence or absence of disulphide bridges, and secondary structure composition, urea concentrates in the first solvation shell of quasi-native proteins, but with a density lower than that of the fully unfolded state. The presence of urea does not alter the spontaneous vibration pattern of proteins. In fact, it reduces the magnitude of such vibrations, leading to a counterintuitive slow down of the atomic-motions that opposes unfolding. Urea stickiness and slow diffusion is, however, crucial for unfolding. Long residence urea molecules placed around the hydrophobic core are crucial to stabilize partially open structures generated by thermal fluctuations. Our simulations indicate that although urea does not favor the formation of partially open microstates, it is not a mere spectator of unfolding that simply displaces to the right of the folded←→unfolded equilibrium. On the contrary, urea actively favors unfolding: it selects and stabilizes partially unfolded microstates, slowly driving the protein conformational ensemble far from the native one and also from the conformations sampled during thermal unfolding

    Bioactive conformational ensemble server and database. A public framework to speed up in silico drug discovery.

    Get PDF
    Modern high-throughput structure-based drug discovery algorithms consider ligand flexibility, but typically with low accuracy, which results in a loss of performance in the derived models. Here we present the Bioactive Conformational Ensemble (BCE) server and its associated database. The server creates conformational ensembles of drug-like ligands and stores them in the BCE database, where a variety of analyses are offered to the user. The workflow implemented in the BCE server combines enhanced sampling molecular dynamics with self-consistent reaction field quantum mechanics (SCRF/QM) calculations. The server automatizes all the steps to transform 1D or 2D representation of drugs into three dimensional molecules, which are then titrated, parametrized, hydrated and optimized before being subjected to Hamiltonian replica-exchange (HREX) molecular dynamics simulations. Ensembles are collected and subjected to a clustering procedure to derive representative conformers, which are then analyzed at the SCRF/QM level of theory. All structural data is organized in a noSQL database accessible through a graphical interface and in a programmatic manner through a REST API. The server allows the user to define a private workspace and offers a deposition protocol as well as input files for "in house" calculations in those cases where confidentiality is a must. The database and the associated server are available at https://mmb.irbbarcelona.org/BC

    How B-DNA dynamics decipher sequence-selective protein recognition

    Get PDF
    The rules governing sequence-specific DNA-protein recognition are under a long-standing debate regarding the prevalence of base versus shape readout mechanisms to explain sequence specificity and of the conformational selection versus induced fit binding paradigms to explain binding-related conformational changes in DNA. Using a combination of atomistic simulations on a subset of representative sequences and mesoscopic simulations at the protein-DNA interactome level, we demonstrate the prevalence of the shape readout model in determining sequence-specificity and of the conformational selection paradigm in defining the general mechanism for binding-related conformational changes in DNA. Our results suggest that the DNA uses a double mechanism to adapt its structure to the protein: it moves along the easiest deformation modes to approach the bioactive conformation, while final adjustments require localized rearrangements at the base-pair step and backbone level. Our study highlights the large impact of B-DNA dynamics in modulating DNA-protein binding

    Structural and energetic study of cation-p-cation interactions in proteins

    Get PDF
    Cation-pi interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-pi-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-pi-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-pi-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-pi-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-pi-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-p-cation motifs in molecular simulations. Keywords: Cation-π−cation complexes; noncovalent interactions; cooperativity; protein structure

    BIGNASim: A NoSQL database structure and analysis portal for nucleic acids simulation data

    Get PDF
    Molecular dynamics simulation (MD) is, just behind genomics, the bioinformatics tool that generates the largest amounts of data, and that is using the largest amount of CPU time in supercomputing centres. MD trajectories are obtained after months of calculations, analysed in situ, and in practice forgotten. Several projects to generate stable trajectory databases have been developed for proteins, but no equivalence exists in the nucleic acids world. We present here a novel database system to store MD trajectories and analyses of nucleic acids. The initial data set available consists mainly of the benchmark of the new molecular dynamics force-field, parmBSC1. It contains 156 simulations, with over 120s of total simulation time. A deposition protocol is available to accept the submission of new trajectory data. The database is based on the combination of two NoSQL engines, Cassandra for storing trajectories and MongoDB to store analysis results and simulation metadata. The analyses available include backbone geometries, helical analysis, NMR observables and a variety of mechanical analyses. Individual trajectories and combined metatrajectories can be downloaded from the portal. The system is accessible through http://mmb.irbbarcelona.org/BIGNASim/. Supplementary Material is also available on-line at http://mmb.irbbarcelona.org/BIGNASim/SuppMaterial/

    Obligatory amino acid exchange via systems b0,+ like and y+L-like. A tertiary active transport mechanism for renal re-absorption of cystine and diabsic amino acids

    Get PDF
    Mutations in the rBAT gene cause type I cystinuria, a common inherited aminoaciduria of cystine and dibasic amino acids due to their defective renal and intestinal reabsorption (Calonge, M. J., Gasparini, P., ChillarĂłn, J., ChillĂłn, M., Gallucci, M., Rousaud, F., Zelante, L., Testar, X., Dallapiccola, B., Di Silverio, F., BarcelĂł, P., Estivill, X., Zorzano, A., Nunes, V., and PalacĂ­n, M. (1994) Nat. Genet. 6, 420-426; Calonge, M. J., Volipini, V., Bisceglia, L., Rousaud, F., De Sanctis, L., Beccia, E., Zelante, L., Testar, X., Zorzano, A., Estivill, X., Gasparini, P., Nunes, V., and PalacĂ­n, M.(1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9667-9671). One important question that remains to be clarified is how the apparently non-concentrative system bo,+-like, associated with rBAT expression, participates in the active renal reabsorption of these amino acids. Several studies have demonstrated exchange of amino acids induced by rBAT in Xenopus oocytes. Here we offer evidence that system bo,+-like is an obligatory amino acid exchanger in oocytes and in the 'renal proximal tubular' cell line OK. System bo, +-like showed a 1:1 stoichiometry of exchange, and the hetero-exchange dibasic (inward) with neutral (outward) amino acids were favored in oocytes. Obligatory exchange of amino acids via system bo,+-like fully explained the amino acid-induced current in rBAT-injected oocytes. Exchange via system bo,+-like is coupled enough to ensure a specific accumulation of substrates until the complete replacement of the internal oocyte substrates. Due to structural and functional analogies of the cell surface antigen 4F2hc to rBAT, we tested for amino acid exchange via system y+L-like. 4F2hc-injected oocytes accumulated substrates to a level higher than CAT1-injected oocytes (i.e. oocytes expressing system y+) and showed exchange of amino acids with the substrate specificity of system y+L and L-leucine-induced outward currents in the absence of extracellular sodium. In contrast to L-arginine, system y+L-like did not mediate measurable L-leucine efflux from the oocyte. We propose a role of systems bo,+-like and y+L-like in the renal reabsorption of cystine and dibasic amino acids that is based on their active tertiary transport mechanism and on the apical and basolateral localization of rBAT and 4F2hc, respectively, in the epithelial cells of the proximal tubule of the nephron

    BioExcel Building Blocks, a software library for interoperable biomolecular simulation workflows.

    Get PDF
    In the recent years, the improvement of software and hardware performance has made biomolecular simulations a mature tool for the study of biological processes. Simulation length and the size and complexity of the analyzed systems make simulations both complementary and compatible with other bioinformatics disciplines. However, the characteristics of the software packages used for simulation have prevented the adoption of the technologies accepted in other bioinformatics fields like automated deployment systems, workflow orchestration, or the use of software containers. We present here a comprehensive exercise to bring biomolecular simulations to the "bioinformatics way of working". The exercise has led to the development of the BioExcel Building Blocks (BioBB) library. BioBB's are built as Python wrappers to provide an interoperable architecture. BioBB's have been integrated in a chain of usual software management tools to generate data ontologies, documentation, installation packages, software containers and ways of integration with workflow managers, that make them usable in most computational environments

    Long-timescale dynamics of the Drew-Dickerson dodecamer

    Get PDF
    We present a systematic study of the long-timescale dynamics of the Drew-Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na(+)Cl(-) or K(+)Cl(-) The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 ÎŒs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 ÎŒs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex
    corecore